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Quantum mechanics and its interpretation are connected in a manifold way by 
the measuring process. The measuring apparatus serve as a means for the 
verification of the theory and are considered as physical objects also subject to 
the laws of this theory. On the basis of this interrelation some parts of the 
interpretation can be derived from other parts by means of quantum theory. On 
the other hand there are interpretations which must be excluded on the basis of 
the quantum theory of measurement. 

1. INTRODUCTION 

Quantum mechanics and its interpretation are connected in a manifold 
way by the measuring process. The interpretation provides a relation 
between the formalism of the object theory and experimental results. This 
relation is based on some particular features of quantum measurements and 
it shows in which way theoretical predictions can be verified by experimental 
means. On the other hand, the measuring apparatus are, considered as 
physical objects, subject to the laws of quantum theory, which leads to a 
quantum theory of quantum measurement. This theory has an important 
influence on the possibilities and limitations of various interpretations of the 
object theory. In fact it turns out that some parts of the interpretation are 
not independent but derivable from other parts by means of quantum object 
theory. On the other hand, there are interpretations which must be excluded 
on the basis of the quantum theory of measurement. 

The measurement-induced interrelations between quantum object the- 
ory and its interpretation, i.e., its metatheory, express some self-referentiality 
of quantum mechanics. The interpretation of the theory is influenced in 

Ilnstitute for Theoretical Physics, University of Cologne, Cologne, Germany. 

1763 

0020-7748/93/1000-1763507.00/0 �9 1993 Plenum Publishing Corporation 



1764 Mittelstaedt 

many ways by the properties of the measuring instruments which are, 
considered as physical objects, subject to the laws of quantum object theory 
(Dalla Chiara, 1977; Peres and Zurek, 1982). This twofold connection 
between the object theory and its metatheory can lead to a self-referential 
consistency of the theory, but also to self-referential inconsistencies. Both 
cases appear in quantum mechanics. 

2. INTERPRETATIONS 

2.1. Minimal Interpretation 

The minimal interpretation I M is the weakest possible interpretation of 
the quantum mechanical formalism and it is contained in any other 
consistent interpretation. It is in the spirit of the empiricism of David 
Hume and the POsitivism of Ernst Mach and was advocated in particular 
by Niels Bohr. It avoids any statements about the properties of individual 
objects and instead refers only to observational data, i.e., to measuring 
outcomes (Busch et al., 1991). 

Let S be an object system prepared in a pure state ~o and 
A = ~ aiP[cp a~] a discrete nondegenerate observable. If q~ is an eigenstate 
~0 a' of A and the system S possesses the value ai of A, then the calibration 
postulate (C) requires that a measurement of A at the system S with 
preparation q0 = ~0 ~i leads to a pointer value Z~ of the measuring apparatus 
indicating that the system S had the eigenvalue a~ and the state q~ai before 
the measurement. If q~ is not an eigenstate of A, [P[~0], A]_ ~ 0, then it is 
not possible to predict with certainty the pointer value after a measurement 
of A. In this case the pointer objectification postulate (PO) requires that 
after an A-measurement the pointer has some objective value Z~, even if it 
cannot be predicted with certainty. Moreover, the probability reproducibil- 
ity postulate (RP) requires that the probability distribution p(~o, a t )=  
tr{P[~0] . p[q~a~]} which is induced by the preparation ~ and the observable 
A is reproduced in the statistics of the pointer values Z} ") after A-measure- 
ments on N equally prepared systems S(n)(q~) with n = 1, 2 , . . . ,  N. 

2.2. Realistic Interpretation 

In case of repeatable measurements of a discrete observable A the 
realistic interpretation IR requires not only the postulates (C) and (PO), 
but also that the object system S possesses objectively an A-value ai and 
that S is in the eigenstate q~a, after the A-measurement. This system 
objectification postulate (SO) leads to a description of the object system 
which is not necessarily contained in the minimal interpretation iM. 
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According to the interpretation Ig, the repeatable measuring process of A 
transforms the initial state q~ into a state q~  which belongs to the A-value 
ai. The quantum theory of measurement has to show under which condi- 
tions this additional postulate (SO) can be justified. Moreover, on the basis 
of the system objectification the probability reproducibility postulate (RP) 
is extended in the realistic interpretation such that the initial probability 
distribution p(q~, ai) is not only reproduced in the statistics of the pointer 
values, but also in the statistics of the A-values ai of the object system S (') 
after the measurement. The reproduction of the probability distribution in 
the statistics of system values al ") is denoted here by (RS) (Busch et al., 
1991). 

2.3. Objectifying Realistic Interpretation 

In the realistic interpretation I R nothing is said about the A-value of 
S before the measurement, i.e., in the state q~, except when q~ is an 
eigenstate of A. In this situation one could tentatively assume that in 
addition to the interpretations IM and I R a  certain value ae of A pertains 
objectively to the system S in the state q), but that this value is subjectively 
unknown to the observer, who knows only the probability p(q~, a;) of the 
value ai. The probability distribution would then express the subjective 
ignorance of the observer about the objectively decided value of A. This 
attribution of a certain A-value to the system S will be called weak 
objectification (Busch and Mittelstaedt, 1991; Busch et al., 1992). ~ 

Under this hypothesis the system S(cp) would possess the property ai in 
a potential sense such that a measuring process would actualize the value 
ai with the probability p(q~, a/). This is the content of the objectifying 
realistic interpretation/OR. However, it turns out, that this extension of the 
realistic interpretation IR is no longer consistent with quantum mechanics. 
This can be seen in the following way. 

If the object system S with Hilbert space H s is in a pure state 
W=P[~0], ~osHs, and if q~ is not an eigenstate of the observable 
A = ~ a~P[~o ul], then we assume that one of the values a~ pertains objectively 
to the system S, but that the observer knows only its probability p(q~, a~). 
From this assumption it follows for the probability of any other observable 
B = ~ bkP[~t bk] with [B, W] r 0 and [B, A] 4= 0 that 

p(~0, bk) ----- tr{~ P[q)a,]P[q~]P[~oai]P[~pbk]} (1) 

2This terminology is used here, since one could also make the strong objectification hypothesis 
that the system not only possesses an eigenvalue of A, but that S is actually in an eigenstate 
of A. In the present context this hypothesis has, however, the same consequences as the weak 
objectification. 
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Therefore, weak objectification implies vanishing interference terms 

pin,(~o; bk, A).'=p@, bk) -- tr{~ P[~0 "qP[q'lP[q'"qP[q' ~]} 

= t r I ~  P[q)~']P[q)]P[q)"J]P[r (2) 
Li~j  

The assumption of weak objectification applied to A requires that equation 
(2) holds for arbitrary observables B. But this is known to be true only for 
eigenstates ~p of A. In all other cases there are some observables B such that 
Pint((p; bk, A) r and (2) is violated. Hence, for arbitrary ~o the hypothesis 
of weak A-objectification is not consistent with quantum mechanics. 

3. QUANTUM THEORY OF UNITARY MEASUREMENTS 

Here we discuss a quantum mechanical model fo r  the measuring 
process making use of unitary premeasurements (Beltrametti et al., 1990; 
Busch et al., 1991). Consequently, the object system S and the measuring 
apparatus M are considered as proper quantum systems with Hilbert 
spaces Hs and HM, respectively. Let (p ells be the initial preparation of S, 
and ~eHM the initial preparation (the neutral state) of M before the 
measurement. We then consider the measuring process of the ordinary, 
discrete nondegenerate observable A = ~ aiP[~o",] and a pointer observable 
Z=~ZiP[~i] with nondegenerate spectrum. Using the complete 
orthonormal system {~p,i}i of states, one can expand the initial state of S as 
qo = ~ cicp" with c~ = (q0-1, q0). 

For the quantum mechanical description of the measuring process we 
distinguish several subsequent steps. 

In step I, the preparation, the compound system C = S + M is in the 
state qJ(S + M) = q)(S) |  with q'~Hs | HM. 

In step II, the premeasurement, the system S and M are in interaction, 
which is described here by the unitary operator U(t)=exp(-i/hHintt) 
acting on the state q~(S + M) within the time interval 0 <- t < t'. Hence we 
obtain q"(S + M ) =  U(t')(q~ @ r for the compound state after the pre- 
measurement. In order to further determine the state W'(S + M), we 
apply the calibration postulate (C). According to this postulate, for a 
system S with preparation q9 = ~0 ~, in the interpretation IM it holds that 
U(~o "i Gab)=  q); @r where the states q)~ sHs are not necessarily eigen- 
states of the observable A. However, for the interpretation IR, which refers 
to repeatable measurements, one has U(q)", | ~) = ~o", | ~ .  In the general 
case one thus obtains 

~ '  : U(q) | ~i)) : ~ (~0 ai, q))U(~o ai | i~) : Z ciq)~ | [~i 
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with q~ = ~p-i for repeatable measurements. By specifying the object state 
q~i, one can characterize different kinds of premeasurements (Beltrametti 
et al., 1990; Busch et al., 199l). For the sake of simplicity we will deal 
here mainly with repeatable measurements, such that ~P'(S + M ) =  
~ c 9 " ' |  Finally, we note that for any observable A there exist a 
unitary operator U which provides an A-premeasurement of the discussed 
kind (Busch et al., 1991). 

In step III of the measuring process, objectification and reading, the 
two systems S and M are again dynamically independent but still corre- 
lated. As subsystems of the compound system C = S + M in the state 
~F'(S + M)  = ~ etq~ a' | cb~, they can be described by the reduced (mixed) 
states 

W~ = ~. [c, [2p[q~,,], W~4 = Z Ic;[2p[(I),] 

respectively. According to the pointer objectification postulate (PO), after 
the measurement the pointer possesses some objective value Z~ indicating 
the measuring result a~. This means that the mixed state W~t must describe 
a Gemenge F(W~t), i.e., a mixture of states ~ such that actually one of  the 
states ~i pertains to the apparatus M. Since we are dealing here with 
repeatable measurements, the strong correlations between S and M after 
the premeasurement imply the system objectification postulate (SO). This 
means that also the mixed state W~ should describe a Gemenge F(W~), 
i.e., a mixture of states ~p"~ such that the object system S is actually in one 
of the eigenstates ~0"~ of  A and possesses the eigenvalue ai. 

4. PROBABILITY REPRODUCIBILITY 

4.1. The Probability Interpretation 

The calibration postulate U(cp al | ~) = ~pai | q~i implies that the post- 
premeasurement state of  the system S + M reads ~ '  = ~ (~0 a~, ~p)cp"~ | ~Pi. 
However, the meaning of the coefficients ci =(~p"~, ~p) is still open. If  
W = P[~p] is the preparation of  S and if A is a discrete observable 
A =~a~P[~p ~] with {a~} = X  A, then the real positive numbers 
p(~p, ai) = tr{P[~p]P[~p"']} = I(~o % ~p)[2 are probabilities in the formal sense, 
i.e., the mapping 

pA = B(XA) _ . ,  [0, 1], ai ~P(qh a;) = tr{P[~p]P[~o"i]} 

is a probability measure satisfying the Kolmogorov axioms [B(X A) is the 
Borel algebra of  XA]. The interpretation of  the probability distribution 
p(q~, a~) can then be obtained from the interpretations IM and I f ,  in 
particular from the probability reproducibility conditions (RP) and (RS). 
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According to the condition (RP) the probability (q), a~) is reproduced 
in the p-statistics of the pointer values Zi. In other words, the number 
p(q~, a;) is the probability to find after the measuring process the pointer 
value Zt which indicates that the A-value ai was measured. This means that 
if one would perform a series of N measurements of the observable A on 
equally prepared systems S ('3 (n = 1, 2 , . . . ,  N), the relative frequency 
fN(W, Zi) of the pointer values Z~ would approach the probability p(~p, a~) 
for N --> oo (van Fraassen, 1979). 

For repeatable measurements the condition (RP) can be extended to the 
stronger condition (RS). The probability p(q), as) is then not only repro- 
duced in the statistics of the pointer values Zg, but also in the statistics of 
the A-values ai of the system S after the measuring process. The number 
p(~0, a~) is then also the probability to find after the measuring process the 
value a~ pertaining to S. This means that if one would perform a series of 
N measurements of A on equally prepared systems S ('), the relative 
frequency fU( W, a,) of systems that after the measurement possess the value 
an would approach the value p(q~, a,) for N ~ oo (van Fraassen, 1979). 

4.2. The Metatheorem of  the Minimal Interpretation 

Within the interpretation I~ the calibration postulate (C) corresponds 
to a probability-free "weak minimal interpretation" I ~ which merely states 
that if a system is in an eigenstate ~p"i of A, then the system possesses the 
A-value ai: A measurement of A will then lead with certainty to the pointer 
value Zi which indicates the measuring result a~. For arbitrary preparations 
one has to add the postulates (PO) and (RP), which lead to the full 
minimal interpretation IM containing also the probability interpretation. 
However, it can be shown that the postulate (RP) and the corresponding 
probability interpretation are no additional assumptions, but follow from 
I ~ and (PO) by means of quantum mechanics. This means that the 
quantum mechanical object theory and the probability-free weak minimal 
interpretation I ~ allow one to derive the full interpretation IM which also 
refers to probabilities. 

In order to deduce this "metatheorem" we presuppose that quantum 
mechanics is a complete and universally valid theory which can equally be 
applied to a single object system as well as to a many-body system S (u) 
consisting of N equally prepared system Si = Si(W). The probability 
interpretation states that a sequence of N measurements of A on systems 
S~(W) would lead to a relative frequency fU(w, Z~) of pointer values Zi 
which approach the probability p(q~, a~) for N--* oo. Hence one has to 
investigate whether in a compound system S (N) of systems S~(W) the 
relative frequency Sv(W, Z~) of measuring results a~ indicated by Zs ap- 
proaches the value p(q~, ai). 
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In order to study this problem we consider N independent systems Si 
with Hilbert spaces Hsi and the discrete observable A = ~ aiP[~p ag] with 
{ai}g = X ~. If  the systems S~ are equally prepared in states ~o<~Hs, the 
compound system S ~N) = SI + $2 + �9 �9 �9 + SN can be described by the state 
(qg)x = r | q~2) |  | q~m. A premeasurement of A transforms the 
initial state Ws~=P[~o ~e)] of the system Si into the mixed state 
W' = trM {P[U(~0 ~) | @)]} and the initial state �9 of M into the mixed state Si 
W'M=trs~{P[U(~o~)| =~p(q~,a~)P[c~] with final states qb~ corre- 
sponding to pointer values Zi. This premeasurement can be extended to a 
premeasurement of the observable A ~N~ = A~ | A2 |  | AN on the com- 
pound system S ~N) in the state (~o) N. The measuring outcome is then given 
by the sequence {Zt~, Zj 2 . . . .  , Z~N } for the pointer values and the pointer 
states {~t~ ,~ t2 , . . .  ,~tN} which indicate the measuring results at. By 
I = {l~, 12 , . . . ,  IN} we denote an index sequence such that az~X ~. In the 
N-fold tensor product Hilbert space H ~  ) of the apparatus the states 

�9 ~ N ) = c b ~ , | 1 7 4 1 7 4  with le~l 

are a complete orthonormal basis, where the states q~ are eigenstates of the 
pointer observable, i.e., Zqbz~ = Z~@z. For any product state q~N) which is 
determined by a sequence I the relative frequency of some pointer value Z~ 
is given by 

N 

fU(k, l )=  1/N Z 6,,.~ 
~=1 

Since the states q)~x) are orthogonal and complete, we can use these states 
for defining a "relative frequency operator" in H ~  ), 

l 

where the sum runs over all sequences 1 = {ll, 12 . . . .  , IN} with li: azi~X A. 
The eigenvalue equation F~N)~IN~ =fS(k,  1)@~ N) then shows that the rela- 
tive frequency of the pointer value Zk is an objective property in the state 
@~N~ which is given by the eigenvalue fU(k, l) of F~ u~. This equation can be 
written equivalently as 

tr{P[~N)l(F~N) _fN(k  '/))2} = 0 

In order to justify the minimal probability interpretation, which refers to a 
situation after the measuring process, we consider the reduced mixed states 

W~4 = 2 P(q), a,)P[*,] 

of the measuring apparatus. The sequence of N measurements of A is then 
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described by the product state 

( w ~  ) N = w ~ )  | w ~ )  |  | w ~  ~) 

where the upper index k of W~ k), say, refers to the measurement of system 
Sk. It is easy to see that (W'M) N is in general not an eigenstate of F~ N), 
which means that the relative frequency of the pointer value Zk is not an 
objective property in the state (W~)u.  However, the following result holds: 

Metatheorem I 

lim tr{(W'M) N(F~N) -- p(~o, ak)) 2} = 0 

According to this theorem, in the limit of large N the postmeasurement 
product state ( W ' u )  N becomes an eigenstate of the relative frequency 
operator F~ N) and the relative frequency of the pointer value Z k approaches 
the probability p(~0, ak). Hence the probability distribution p(q~, ai) which is 
induced by the preparation q) and the observable A is reproduced in the 
statistics of the pointer values. In this sense Metatheorem I justifies the 
postulate (RP). For the proof of this metatheorem one must presuppose 
merely the weak minimal interpretation /OM, which corresponds to the 
calibration postulate (C) (Busch et al., 1991; Mittelstaedt, 1991). Further- 
more, for the interpretation of the metatheorem, the objectification of the 
pointer values, i.e., the postulate (PO), must be presupposed. Under these 
conditions Metatheorem I induces a self-referential consistency between 
object theory and metatheory. 

4.3. The Metatheorem of the Realistic Interpretation 

In the case of repeatable measurements one can apply the realistic 
interpretation IR, according to which not only are the postulates (C), (PO), 
and (RP) fulfilled, but so are the stronger postulates (SO) and (RS). 
According to these postulates, the probability distribution p(~p, ai) is reprO- 
duced in the statistics of the system values ai after the measurement. This 
means that a sequence of A-measurements on equally prepared systems 
S i ( W )  would lead to system values a~ and relative frequency f U ( w ,  ak) of 
which would approach the probability p(~p, ak) for N --, ~ .  However, it can 
again be shown that the postulate (RS) and the corresponding realistic 
interpretation IR are not additional assumptions, but follow (by means of 
quantum mechanics) from the weak realistic interpretation which makes 
use of the postulate (C). 

In order to justify this metatheorem of the interpretation IR we 
consider again N equally prepared systems S i (W) ,  W = P[~p] as a com- 
pound system S (u) in the state (~p)N6H~). A unitary and repeatable 
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premeasurement of  A will then transform the initial states Ws, = P[~o (i)] of  
Si into the reduced mixed states 

W~, = trM {P[U(~o (~) | (9)] } = ~p(q~, a~)P[~o ~] 

with the final states go "i and A-values ai. A premeasurement of A (N) on the 
c6r system S (N) in the state (~0) N will then lead to a sequence 
{ate, a12, �9 �9 �9 , ate)} of outcomes and to a sequence of final states v,'~(~)~Hs,li 
satisfying the eigenvalue equation ~.~,l~a ~(i) = ~l~v,~,'~ ,~(i). By li we denote again the 
index values such that al, e X  A. 

In the Hilbert space H (N) of the compound system S (N~ the pro- 
duct states q)}N) (p~]) @ .~ (2) (-~ .,~(N) eH(N) = '712 ~ ' "  "| u'l~ with index sequences 
l = {l~, L . . . .  , lu} form a complete and orthonormal basis. In a state  (p}N) 
each subsystem S~ has a well-defined A-value al~. The relative frequency of  
the eigenvalue ak in the state (pl N) is then given b y f N ( k ,  l) = 1IN ~ 6l~,k. A 
relative frequency operator for the value ak can be defined using the states 
gol N) in H(s N) b y f  (N) = ~fU(k,/)P[~01u)].  In accordance with the calibration 

�9 (N) (N) postulate, the eigenvalue equa t lonf~  q~l =f(N)(k ,  l)gol N) shows, that the 
relative frequency of the value ak is an objective property of  S (x) in the 
state ~p~N). The eigenvalue equation can also be written in the equivalent 
form 

tr{P[~olu)](f(kN) _ fN(k  ' / ) )2}  = 0 

For  a justification of  the interpretation I~ one has to consider the postpre- 
measurement state of the compound system S (N), which is given by the 

W' of  mixed reduced states W' In gen- tensor product (w~)N = @i= ~ S~ S~" 
eral the state (W's )  u is not an eigenstate off(k N), which means that in the 
state (W's)  N the relative frequency of ak is not an objective property of  the 
system S (x). However, for large values of  N the postpremeasurement 
product state ( W } )  u becomes an eigenstate of  f(k u) and we have the 
following result. 

Metatheorem H 

lira t r{(W's)N(f(k  ~) --p(~o, ak)) 2} = 0 
N~a:? 

This theorem shows that for the limit N--* oo the system S (u) in the 
state (W})N possesses an objective value of the relative frequency of a~ and 
that this value agrees with the probability p((p, ak) which is induced by g0 
and A. The proof  of  this theorem is rather analogous to the proof  of 
Metatheorem I and can be found in Busch et al. (1991) and Mittelstaedt 
(1991). It is based on the weak realistic interpretation I ~ which corre- 
sponds to the calibration postulate (C) and on the assumption that the 
mixed state W' s, can be understood as a description of  a mixture of states 
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q~ak, an assumption which corresponds to the system objectification (SO). 
Under these conditions it follows that the probability distribution p(tp, at) 
is reproduced in the statistics of the system values ai after the A-measure- 
ment [(RS) postulate]. In this way a further self-referential consistency 
between the object quantum theory and its metatheory is induced by 
Metatheorem II. 

5. THE NONOBJECTIFICATION T H E O R E M S  

5.1. Nonobjectification in Pure States 

The impossibility of a weak or strong objectification in pure states is 
important for any interpretation of quantum mechanics. According to the 
results of  Section 2.3, a quantum system S in a pure state cp, which is not 
an eigenstate of the observable A, does not admit a weak or strong 
objectification of  A. This means that the state P[tp] must not be considered 
as an incomplete description of  S, such that S(W) is actually in an 
eigenstate ~p ~i of A or possesses a value ai which is, however, not known to 
the observer. 

On the basis of this interpretation the following problem arises. Even 
if the value of A and the corresponding eigenstate are not objective in the 
state W, the observable A can be measured by means of a convenient 
apparatus M. After the measuring process the system should be in an 
eigenstate of A, i.e., the measuring process must provide in some way the 
objectification of A. This is the content of the postulate (SO) in the 
interpretation IR. Hence one should expect that the mixed state W~ of  S 
after the premeasurement admits a strong or weak ignorance interpreta- 
tion. The system would then be in an eigenstate ~p a, of  .4 or it would at least 
possess one of the values a i. In case of nonrepeatable measurements one 
would at least expect that the mixed state W~ of the measuring apparatus 
admits a strong or weak ignorance interpretation, which means that M is 
in an eigenstate O~. of Z or that a value Z,- of  Z pertains to the measuring 
apparatus. This corresponds to the postulate (PO) in the interpretation IM. 

5.2. Nonobjectification in Mixed States 

In order to discuss the question of whether the mixed states W~ and 
W~ admit an ignorance interpretation, we consider the compound system 
C = S + M with the initial preparation T ( S  + M) = tp | O. After a unitary 
repeatable premeasurement the system S + M is in the pure state 

~P'(s + M) = U(~ | O) = y~ (~% ~)~o a' | O, 
i 
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where U is the unitary operator which provides the premeasurement of A. 
Here we have assumed unitary and repeatable premeasurements. For 
unitary but nonrepeatabte premeasurements in the compound state 
tP'(S + M) one has to replace the states ~0 ~i by more general states (p~eHs 
which need not be eigenstates of A. 

If the compound system S + M  is in the pure state W ' =  
P[~' (S  + M)], then the subsystems S and M are in the correlated reduced 
mixed states 

W~ = trM{ W'} = ~p(~o, a,)P[~oa'], W~  = trs{W'  } = ~p(~o, a,)P[@,] 

where p(~o, ai) = ](~0% ~0)t 2 are the probabilities for the values ai and Z;, 
respectively. One can then argue in the following way. The strong objectifi- 
cation hypothesis for the system S in the state W} with respect to the 
e igenstates ~o", of A implies that the compound system S + M is in the 
mixed state 

W~,, = ~p(~o, a~)P[q~ ~, |  

and not, as previously assumed, in the pure state q~'. Consequently, for an 
observable B*= ~ B*P[~k] with tg~eHs |  of the compound system, 
one would obtain for the probability p(W', B~) of the value B~ 

p(~' ,  B*) = tr{ W~o,P[h~ (3) 

However, this equation implies vanishing interference terms 

for arbitrary B*. Since this is known to be true only for eigenstates tp, of 
the operator A * = A | 1M, it follows that for arbitrary states W' the strong 
ignorance interpretation applied to the mixed states W~4 and W} is 
inconsistent with quantum mechanics. 

This result can be extended to the weak ignorance interpretation, i.e., 
to the attribution of a value a~ to the system S in the state W). The reason 
is that the weak ignorance hypothesis applied to the state W} leads to the 
same equation (3) for the probability of a value B~ of the system S + M 
(Busch et al., 1992). Since this equation is in general inconsistent with 
quantum mechanics, the weak ignorance interpretation of the system S in 
the state W} is not tenable. This is the content of the following nonobjec- 
tification (NO) theorem: 

(NO) Theorem L Let S be an object system with state q) and 
A = ~ a~P[~p ~'] a discrete observable such that ~o is not an eigenstate of A. 
After a unitary and repeatable premeasurement, S is described by the state 
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W} = ~ p(q~, ai)P[~0~i], which does not admit a strong or weak ignorance 
interpretation. 

An analogous result holds for the measuring apparatus in the reduced 
mixed state W~4 after the premeasurement. This result is of particular 
interest for unitary nonrepeatable premeasurements, since in this case only 
the pointer will be in the mixed state W~t =~p((p ,  ai)P[~i] with eigen- 
states Oi of the pointer observable, whereas the state W} of S does not 
correspond to a decomposition of eigenstates ~0 ~ of A. Applied to the 
measuring apparatus M, it follows from the arguments mentioned above 
that it is not possible to assume that after the premeasurement of A the 
apparatus M is merely described by the mixed state W~t but that M is 
objectively in one of the eigenstates Os of Z. Moreover, it is impossible to 
assume that the system M in the state W~t possesses objectively some 
pointer value Zi which is merely subjectively unknown to the observer. We 
thus arrive at the following theorem. 

(NO) Theorem H. After a unitary premeasurement of the observable A 
on the system S in the state q0 the measuring apparatus M is in a mixed 
state W'M=~p(~o,a~)P[O~], which does not admit a strong or weak 
ignorance interpretation. 

The nonobjectification theorems are of particular importance for the 
interpretations IR and IM. NO Theorem I shows that by means of unitary 
and repeatable premeasurements the system objectification postulate (SO) 
cannot be fulfilled, i.e., unitarity (U) implies -n(SO). Moreover, unitary 
premeasurements are also inconsistent with the pointer objectification 
postulate (PO), i.e., (U) implies also -~(PO). It is obvious that these results 
represent a serious self-referential inconsistency of quantum mechanics, 
since by means of the object theory some parts of the metatheoretical 
interpretations I R and IM can be disproved. 

6. CONCLUDING REMARKS 

6.1. Probability Metatheorems 

Quantum mechanics and the theory of unitary premeasurements show 
a remarkable self-referential consistency. Quantum object theory is not 
only in accordance with the statistical components of the interpretations I M 
and IR. Moreover, quantum mechanics allows one to derive the reproduc- 
tion of the initial probability in the statistics of the measuring outcomes if 
merely the probability-free parts of the respective interpretations are pre- 
supposed. In particular, on the basis of quantum object theory the postu- 
lates (C) and (PO) imply (RP) corresponding to the minimal interpretation 
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IM (Metatheorem I ) - - a n d  the postulates (C) and (SO) imply (RS), which 
corresponds to the realistic interpretation (Metatheorem II). 

6.2. Nonobjectification Theorems 

On the other hand, quantum theory and the theory of unitary premea- 
surements allow one to disprove the objectification requirements of  the 
interpretations IR and I M. In fact, in case of  the realistic interpretation the 
unitarity (U) implies -7(SO) (NO Theorem I) and in case of  the minimal 
interpretation the unitarity (U) implies -7 (PO) (NO Theorem II). Since the 
objectification requirements (SO) and (PO) are essential parts of  the 
interpretations IR and I M it follows that quantum object theory disproves 
its own interpretation. These contradictions between object theory and its 
metatheory indicate a serious self-referential inconsistency of quantum 
mechanics. It should be added that the conclusions -1(SO) and 7 ( P O )  of 
the NO Theorems I and II also invalidate the importance of the probabili ty 
Metatheorems I and II, since for the interpretation of these theorems the 
objectification requirements (SO) and (PO) must be fulfilled. 
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